azarasi / LeetCode 2104. Sum of Subarray Ranges

Created Fri, 04 Mar 2022 13:09:50 +0800 Modified Sun, 17 Nov 2024 12:29:51 +0000

You are given an integer array nums. The range of a subarray of nums is the difference between the largest and smallest element in the subarray.

Return the sum of all subarray ranges of nums.

A subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

Input: nums = [1,2,3]

Output: 4

Explanation: The 6 subarrays of nums are the following: [1], range = largest - smallest = 1 - 1 = 0

[2], range = 2 - 2 = 0

[3], range = 3 - 3 = 0

[1,2], range = 2 - 1 = 1

[2,3], range = 3 - 2 = 1

[1,2,3], range = 3 - 1 = 2

So the sum of all ranges is 0 + 0 + 0 + 1 + 1 + 2 = 4.

Example 2:

Input: nums = [1,3,3]

Output: 4

Explanation: The 6 subarrays of nums are the following:

[1], range = largest - smallest = 1 - 1 = 0

[3], range = 3 - 3 = 0

[3], range = 3 - 3 = 0

[1,3], range = 3 - 1 = 2

[3,3], range = 3 - 3 = 0

[1,3,3], range = 3 - 1 = 2

So the sum of all ranges is 0 + 0 + 0 + 2 + 0 + 2 = 4.

Example 3:

Input: nums = [4,-2,-3,4,1]

Output: 59

Explanation: The sum of all subarray ranges of nums is 59.

Constraints:

  • 1 <= nums.length <= 1000
  • \(-10^9 <= nums[i] <= 10^9\)

Follow-up: Could you find a solution with O(n) time complexity?

Can you get the max/min of a certain subarray by using the max/min of a smaller subarray within it?

Notice that the max of the subarray from index i to j is equal to max of (max of the subarray from index i to j-1) and nums[j].

题解

方法一:遍历子数组

思路与算法

为了方便计算子数组的最大值与最小值,我们首先枚举子数组的左边界 i,然后枚举子数组的右边界 j,且 i≤j。在枚举 j 的过程中我们可以迭代地计算子数组 [i,j] 的最小值 minVal 与最大值 maxVal,然后将范围值 maxVal−minVal 加到总范围和。

复杂度分析

  • 时间复杂度:\(O(n^2)\),其中 n 为数组的大小。两层循环需要 \(O(n^2)\)。

  • 空间复杂度:O(1)。

class Solution {
public:
    long long subArrayRanges(vector<int>& nums) {
        long long ans = 0;
        for(int i = 0; i + 1 < nums.size(); i++) {
            int minimum = nums[i];
            int maximum = nums[i];
            for(int j = i + 1; j < nums.size(); j++) {
                minimum = min(minimum, nums[j]);
                maximum = max(maximum, nums[j]);
                ans += maximum - minimum;
            }
        }
        return ans;
    }
};

方法二:单调栈

思路与算法

为了使子数组的最小值或最大值唯一,我们定义如果 nums[i]=nums[j],那么 nums[i] 与 nums[j] 的逻辑大小由下标 i 与下标 j 的逻辑大小决定,即如果 i<j,那么 nums[i] 逻辑上小于 nums[j]。

根据范围和的定义,可以推出范围和 sum 等于所有子数组的最大值之和 sumMax 减去所有子数组的最小值之和 sumMin。

假设 nums[i] 左侧最近的比它小的数为 nums[j],右侧最近的比它小的数为 nums[k],那么所有以 nums[i] 为最小值的子数组数目为 (k−i)×(i−j)。为了能获得 nums[i] 左侧和右侧最近的比它小的数的下标,我们可以使用单调递增栈分别预处理出数组 minLeft 和 minRight,其中 minLeft[i] 表示 nums[i] 左侧最近的比它小的数的下标,minRight[i] 表示 nums[i] 右侧最近的比它小的数的下标。

以求解 minLeft 为例,我们从左到右遍历整个数组 nums。处理到 nums[i] 时,我们执行出栈操作直到栈为空或者 nums 中以栈顶元素为下标的数逻辑上小于 nums[i]。如果栈为空,那么 minLeft[i]=−1,否则 minLeft[i] 等于栈顶元素,然后将下标 i 入栈。

那么所有子数组的最小值之和 \(\textit{sumMin} = \sum_{i=0}^{n-1} (\textit{minRight}[i] - i) \times (i - \textit{minLeft}[i]) \times \textit{nums}[i]\)。

同理我们也可以求得所有子数组的最大值之和 sumMax。

复杂度分析

  • 时间复杂度:O(n),其中 n 为数组的大小。使用单调栈预处理出四个数组需要 O(n),计算最大值之和与最小值之和需要 O(n)。

  • 空间复杂度:O(n)。保存四个数组需要 O(n);单调栈最多保存 n 个元素,需要 O(n)。

class Solution {
public:
    long long subArrayRanges(vector<int>& nums) {
        int n = nums.size();
        vector<int> minLeft(n), minRight(n), maxLeft(n), maxRight(n);
        stack<int> minStack, maxStack;
        for (int i = 0; i < n; i++) {
            while (!minStack.empty() && nums[minStack.top()] > nums[i]) {
                minStack.pop();
            }
            minLeft[i] = minStack.empty() ? -1 : minStack.top();
            minStack.push(i);

            // 如果 nums[maxStack.top()] == nums[i], 那么根据定义,
            // nums[maxStack.top()] 逻辑上小于 nums[i],因为 maxStack.top() < i
            while (!maxStack.empty() && nums[maxStack.top()] <= nums[i]) {
                maxStack.pop();
            }
            maxLeft[i] = maxStack.empty() ? -1 : maxStack.top();
            maxStack.push(i);
        }
        minStack = stack<int>();
        maxStack = stack<int>();
        for (int i = n - 1; i >= 0; i--) {
            // 如果 nums[minStack.top()] == nums[i], 那么根据定义,
            // nums[minStack.top()] 逻辑上大于 nums[i],因为 minStack.top() > i
            while (!minStack.empty() && nums[minStack.top()] >= nums[i]) {
                minStack.pop();
            }
            minRight[i] = minStack.empty() ? n : minStack.top();
            minStack.push(i);

            while (!maxStack.empty() && nums[maxStack.top()] < nums[i]) {
                maxStack.pop();
            }
            maxRight[i] = maxStack.empty() ? n : maxStack.top();
            maxStack.push(i);
        }

        long long sumMax = 0, sumMin = 0;
        for (int i = 0; i < n; i++) {
            sumMax += static_cast<long long>(maxRight[i] - i) * (i - maxLeft[i]) * nums[i];
            sumMin += static_cast<long long>(minRight[i] - i) * (i - minLeft[i]) * nums[i];
        }
        return sumMax - sumMin;
    }
};