azarasi / LeetCode 307. Range Sum Query - Mutable

Created Mon, 04 Apr 2022 12:46:58 +0800 Modified Sun, 17 Nov 2024 12:29:51 +0000

Given an integer array nums, handle multiple queries of the following types:

  1. Update the value of an element in nums.
  2. Calculate the sum of the elements of nums between indices left and right inclusive where left <= right.

Implement the NumArray class:

  • NumArray(int[] nums) Initializes the object with the integer array nums.
  • void update(int index, int val) Updates the value of nums[index] to be val.
  • int sumRange(int left, int right) Returns the sum of the elements of nums between indices left and right inclusive (i.e. nums[left] + nums[left + 1] + ... + nums[right]).

Example 1:

Input

[“NumArray”, “sumRange”, “update”, “sumRange”]

[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]

Output

[null, 9, null, 8]

Explanation

NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // return 1 + 3 + 5 = 9
numArray.update(1, 2); // nums = [1, 2, 5]
numArray.sumRange(0, 2); // return 1 + 2 + 5 = 8

Constraints:

  • \(1 <= nums.length <= 3 * 10^4\)
  • -100 <= nums[i] <= 100
  • 0 <= index < nums.length
  • -100 <= val <= 100
  • 0 <= left <= right < nums.length
  • At most \(3 * 10^4\) calls will be made to update and sumRange.

Solution

线段树 \(\textit{segmentTree}\)是一个二叉树,每个结点保存数组 \(\textit{nums}\)在区间 \([s, e]\)的最小值、最大值或者总和等信息。

线段树可以用树也可以用数组(堆式存储)来实现。

对于数组实现,假设根结点的下标为 \(0\),如果一个结点在数组的下标为 \(\textit{node}\),那么它的左子结点下标为 \(\textit{node} \times 2 + 1\),右子结点下标为 \(\textit{node} \times 2 + 2\)。

  • 建树 \(\textit{build}\)函数

    我们在结点 \(\textit{node}\)保存数组 \(\textit{nums}\)在区间 \([s, e]\)的总和。

    • \(s = e\)时,结点 \(\textit{node}\)是叶子结点,它保存的值等于 \(\textit{nums}[s]\)。

    • \(s < e\)时,结点 \(\textit{node}\)的左子结点保存区间 \(\Big [ s, \Big \lfloor \dfrac{s + e}{2} \Big \rfloor \Big ]\)的总和,右子结点保存区间 \(\Big [ \Big \lfloor \dfrac{s + e}{2} \Big \rfloor + 1, e \Big ]\)的总和,那么结点 \(\textit{node}\)保存的值等于它的两个子结点保存的值之和。

    假设 \(\textit{nums}\)的大小为 \(n\),我们规定根结点 \(\textit{node} = 0\)保存区间 \([0, n - 1]\)的总和,然后自下而上递归地建树。

  • 单点修改 \(\textit{change}\)函数 当我们要修改 \(\textit{nums}[\textit{index}]\)的值时,我们找到对应区间 \([\textit{index}, \textit{index}]\)的叶子结点,直接修改叶子结点的值为 \(\textit{val}\),并自下而上递归地更新父结点的值。

  • 范围求和 \(\textit{range}\)函数 给定区间 \([\textit{left}, \textit{right}]\)时,我们将区间 \([\textit{left}, \textit{right}]\)拆成多个结点对应的区间。

    • 如果结点 \(\textit{node}\)对应的区间与 \([\textit{left}, \textit{right}]\)相同,可以直接返回该结点的值,即当前区间和。

    • 如果结点 \(\textit{node}\)对应的区间与 \([\textit{left}, \textit{right}]\)不同,设左子结点对应的区间的右端点为 \(m\),那么将区间 \([\textit{left}, \textit{right}]\)沿点 \(m\)拆成两个区间,分别计算左子结点和右子结点。

    我们从根结点开始递归地拆分区间 \([\textit{left}, \textit{right}]\)。

复杂度分析

  • 时间复杂度:

    • 构造函数:\(O(n)\),其中 \(n\)是数组 \(\textit{nums}\)的大小。二叉树的高度不超过 \(\lceil \log n \rceil + 1\),那么 \(\textit{segmentTree}\)的大小不超过 \(2 ^ {\lceil \log n \rceil + 1} - 1 \le 4n\),所以 \(\textit{build}\)的时间复杂度为 \(O(n)\)。

    • \(\textit{update}\)函数:\(O(\log n)\)。因为树的高度不超过 \(\lceil \log n \rceil + 1\),所以涉及更新的结点数不超过 \(\lceil \log n \rceil + 1\)。

    • \(\textit{sumRange}\)函数:\(O(\log n)\)。每层结点最多访问四个,总共访问的结点数不超过 \(4 \times (\lceil \log n \rceil + 1)\)。

  • 空间复杂度:\(O(n)\)。保存 \(\textit{segmentTree}\)需要 \(O(n)\)的空间。

class NumArray {
private:
    vector<int> segmentTree;
    int n;

    void build(int node, int s, int e, vector<int> &nums) {
        if (s == e) {
            segmentTree[node] = nums[s];
            return;
        }
        int m = s + (e - s) / 2;
        build(node * 2 + 1, s, m, nums);
        build(node * 2 + 2, m + 1, e, nums);
        segmentTree[node] = segmentTree[node * 2 + 1] + segmentTree[node * 2 + 2];
    }

    void change(int index, int val, int node, int s, int e) {
        if (s == e) {
            segmentTree[node] = val;
            return;
        }
        int m = s + (e - s) / 2;
        if (index <= m) {
            change(index, val, node * 2 + 1, s, m);
        } else {
            change(index, val, node * 2 + 2, m + 1, e);
        }
        segmentTree[node] = segmentTree[node * 2 + 1] + segmentTree[node * 2 + 2];
    }

    int range(int left, int right, int node, int s, int e) {
        if (left == s && right == e) {
            return segmentTree[node];
        }
        int m = s + (e - s) / 2;
        if (right <= m) {
            return range(left, right, node * 2 + 1, s, m);
        } else if (left > m) {
            return range(left, right, node * 2 + 2, m + 1, e);
        } else {
            return range(left, m, node * 2 + 1, s, m) + range(m + 1, right, node * 2 + 2, m + 1, e);
        }
    }

public:
    NumArray(vector<int>& nums) : n(nums.size()), segmentTree(nums.size() * 4) {
        build(0, 0, n - 1, nums);
    }

    void update(int index, int val) {
        change(index, val, 0, 0, n - 1);
    }

    int sumRange(int left, int right) {
        return range(left, right, 0, 0, n - 1);
    }
};